Sunday, August 10, 2008
Zebra's Stripes, Butterfly's Wings: How Do Biological Patterns Emerge?
ScienceDaily
“Pattern formation is a classic problem in embryology,” says Denise Montell, Ph.D., a professor of biological chemistry at Hopkins. “At some point, cells in an embryo must separate into those that will become heart cells, liver cells, blood cells and so on. Although this has been studied for years, there is still a lot we don’t understand.”. . .
By making certain assumptions about each gene and assigning functions to each protein, the team built a simple circuit that can predict a cell’s behavior using the graded signal, apontic, and another previously discovered protein called slbo (pronounced “slow-bo”). The computer model shows that in a cell, the graded signal turns on both apontic and slbo. But apontic and slbo work against and battle each other: when one gains a slight advantage, the other weakens, which in turn causes the first to gain an even bigger advantage. This continues until one dominates in each cell. If slbo wins, the cell moves but if apontic wins, the cell stays put; thus a clear separation between move or stay is achieved. “Not only is this a new solution to the problem of how to create a pattern out of no pattern, but we have also discovered that apontic is a new regulator of cell migration,” says Montell.
Topics: |
Comments:
Post a Comment