<$BlogRSDUrl$>

Thursday, November 22, 2007

Bioclocks work by controlling chromosome coiling 

Carl Johnson
In recent years, scientists have discovered that biological clocks help organize a dizzying array of biochemical processes in the body. Despite a number of hypotheses, exactly how the microscopic pacemakers in every cell in the body exert such a widespread influence has remained a mystery. < p/> Now, a new study provides direct evidence that biological clocks can influence the activity of a large number of different genes in an ingenious fashion, simply by causing chromosomes to coil more tightly during the day and to relax at night.

. . .

Johnson’s team, which consisted of Senior Lecturer Mark A Woelfle, Assistant Research Professor Yao Xu and graduate student Ximing Qin, performed the study with cyanobacteria (blue-green algae), the simplest organism known to possess a biological clock. The chromosomes in cyanobacteria are organized in circular molecules of DNA. In their relaxed state, they form a single loop. But, within the cell, they are usually “supercoiled” into a series of small helical loops. There are even two families of special enzymes, called gyrases and topoisomerases, whose function is coiling and uncoiling DNA.

. . .

Some cyanobacteria use their biological clocks to control two basic processes. During the day, they use photosynthesis to turn sunlight into chemical energy. During the night, they remove nitrogen from the atmosphere and incorporate it into a chemical compound that they can use to make proteins. < p/> According to the Johnson lab’s “oscilloid model,” the genes that are involved in photosynthesis should be located in regions of the chromosome that are “turned on” by the tighter coiling in the DNA during the day and “turned off” during the night when the DNA is more relaxed. By the same token, the genes that are involved in nitrogen fixation should be located in regions of the chromosome that are “turned off” during the day when the DNA is tightly coiled and “turned on” during the night when it is more relaxed.

Topics: DNA | information | time


Comments: Post a Comment

This page is powered by Blogger. Isn't yours?